Asymptotic Analysis of Ruin in Cev Model

نویسنده

  • F. KLEBANER
چکیده

We give asymptotic analysis for probability of absorbtion P(τ0 ≤ T ) on the interval [0, T ], where τ0 = inf{t : Xt = 0} and Xt is a nonnegative diffusion process relative to Brownian motion Bt, dXt = μXtdt+ σX γ t dBt. X0 = K > 0 Diffusion parameter σx , γ ∈ [ 1 2 , 1) is not Lipschitz continuous and assures P(τ0 > T ) > 0. Our main result: lim K→∞ 1 K2(1−γ) logP(τ0 ≤ T ) = − 1 2EM T , where MT = R T 0 σ(1− γ)edBs. Moreover we describe the most likely path to absorbtion of the normed process Xt K for K → ∞.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Euler-maruyama Approximations for the Cev Model

The CEV model is given by the stochastic differential equation Xt = X0 + ∫ t 0 μXsds + ∫ t 0 σ(X + s ) dWs, 1 2 ≤ p < 1. It features a non-Lipschitz diffusion coefficient and gets absorbed at zero with a positive probability. We show the weak convergence of Euler-Maruyama approximations Xn t to the process Xt, 0 ≤ t ≤ T , in the Skorokhod metric, by giving a new approximation by continuous proc...

متن کامل

Ruin Analysis and Ldp for Cev Model

We give results on the probability of absorption at zero of the diffusion process Xt with X0 = K > 0 and non-Lipschitz diffusion coefficient σx , γ ∈ [ 1 2 , 1): dXt = μXtdt + σX γ t dBt relative to Brownian motion Bt. Our results give information on the time to ruin τ0 = inf{t : Xt = 0}. We show that P (τ0 ≤ T ) > 0 for all T , give the probability of ultimate ruin, and establish asymptotics i...

متن کامل

Option Pricing under Hybrid Stochastic and Local Volatility

This paper deals with an option pricing model which can be thought of as a hybrid stochastic and local volatility model. This model is built on the local volatility term of the well-known constant elasticity of variance (CEV) model multiplied by a stochastic volatility term driven by a fast mean-reverting Ornstein-Uhlenbeck process. An asymptotic formula for European option price is derived to ...

متن کامل

The Probabilities of Absolute Ruin in the Renewal Risk Model with Constant Force of Interest

In this paper we consider the probabilities of finiteand infinite-time absolute ruin in the renewal risk model with constant premium rate and constant force of interest. In the particular case of compound Poisson model, explicit asymptotic expressions for the finiteand infinite-time absolute ruin probabilities are given. For the general renewal risk model, we present an asymptotic expression fo...

متن کامل

A New Computational Scheme for Computing Greeks by the Asymptotic Expansion Approach

We developed a new scheme for computing ”Greeks” of derivatives by an asymptotic expansion approach. In particular, we derived analytical approximation formulae for Deltas and Vegas of plain vanilla and average European call options under general Markovian processes of underlying asset prices. Moreover, we introduced a new variance reduction method of Monte Carlo simulations based on the asympt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009